Guía para el Trabajo Práctico N° 4: Electrocardiografía

Derivaciones electrocardiográficas:
La actividad eléctrica del corazón genera diferencias de potencial en la superficie del cuerpo, que son posibles de detectar y registrar. Se llama electrocardiograma (ECG) al registro gráfico de estos cambios de voltaje en función del tiempo. Como los potenciales que se registran son muy pequeños, del orden de milivoltios (mV), es necesario utilizar un sistema amplificador que produzca corrientes suficientemente fuertes para impulsar un galvanómetro que mueve una aguja inscriptora caliente sobre un papel termosensible (Fig. 1).

El electrocardiógrafo así constituido está conectado al paciente mediante electrodos de metal inoxidable cubiertos de una película de pasta conductor que se sujetan firmemente a los miembros del paciente. Un sistema de llaves permite seleccionar la forma de conexión entre los cables de paciente y los terminales del amplificador. Este está conectado a través de condensadores que eliminan las corrientes continuas o de variación muy lenta, como las producidas por los procesos electrolíticos entre los electrodos, la pasta, la respiración, etc., y facilitan la obtención de una línea de base estable.
El terminal que frente a potenciales positivos provoca deflexiones hacia arriba en el registro, recibe este signo. Cada una de las diferentes formas de conexión entre el paciente y los terminales del electrocardiógrafo recibe el nombre de derivación; también se llama así al registro obtenido con cada una de ellas.

Las derivaciones bipolares registran diferencias de potencial entre dos puntos; las más usadas son las derivaciones bipolares de los miembros standard o clásicas. Con ellas se registran diferencias de potencial entre ambos brazos (D I), o entre la pierna izquierda y el brazo derecho (D II), o entre la pierna y el brazo izquierdos (D III). En estas derivaciones la pierna izquierda se une al terminal positivo (D II y D III) y el brazo derecho al terminal negativo (D I y D II).

Esta convención fue arbitrariamente establecida por Einthoven, que lo dispuso así para que las deflexiones más grandes registradas en un sujeto normal fuesen hacia arriba en el registro.
Posteriormente Wilson, con el propósito de registrar potenciales netos en un punto, creó las derivaciones unipolares. En ellas el punto del cuerpo del que se quieren registrar potenciales se conecta mediante un electrodo explorador al terminal positivo del electrocardiógrafo, mientras que los otros tres miembros se conectan mediante resistencias al otro terminal (terminal central de Wilson).

El potencial de este terminal, dada la simetría de los miembros con respecto a los potenciales generados en el corazón, no debería ser influenciado por los cambios en la actividad eléctrica del órgano, manteniendo un nivel de referencia o "cero". Las derivaciones unipolares se designan con la letra V para indicar que usan el terminal central de Wilson como referencia. Las más utilizadas son las precordiales numeradas de V1 a V6, según la posición ocupada por el electrodo explorador, según se indica a continuación (Fig. 2).

![Figura 2](image_url)

Las derivaciones unipolares de los miembros son VR, VL y VF, donde las letras R, L y F corresponden a las iniciales de las palabras inglesas RIGHT, LEFT y FOOT, que indican el miembro conectado al electrodo explorador. Son más usadas para los miembros las derivaciones unipolares aumentadas, originariamente descriptas por Goldberger, que miden la diferencia de potencial entre el miembro conectado al electrodo explorador y los otros dos que se conectan entre sí y al terminal negativo del electrocardiógrafo. Se las designa agregando una "a" (de aumentada) a las denominaciones anteriores (aVR, aVL y aVF respectivamente).

PARTE PRACTICA: Dibuje esquemáticamente la forma de conexión entre el paciente y el electrocardiógrafo para cada una de las derivaciones descriptas.

VECTOR ELECTRICOS

El potencial que registra un electrodo depende de la variación en el tamaño, la geometría y las posición que ocupa sucesivamente la superficie que separa el área activa de la de reposo durante la despolarización y la repolarización. Durante la despolarización, el área activa será negativa con respecto a la que aún está en reposo, es decir que la excitación se propaga como un frente que lleva cargas positivas en la "cabeza" y cargas negativas en la "cola". Estos dipolos tienen una manifestación electrocardiográfica con las que se los puede relacionar trazando un vector que se dirija hacia la parte positiva y cuya intensidad depende de
la superficie libre del órgano que está despolarizada. Si ese vector se proyecta sobre una línea de derivación, el tamaño y la polaridad de la proyección sobre esta derivación corresponde al tamaño y la polaridad de la onda que se registra en ese momento.

Para la proyección de los vectores en el plano frontal, se supone que los miembros forman los vértices de un triángulo equilátero (Triángulo de Einthoven) cuyo centro es el corazón y cuyos lados constituyen las líneas de derivación DI, DII y DIII. Se supone también que el cuerpo se comporta como un conductor homogéneo. Los vectores se proyectan trazando perpendiculares a las líneas de derivación que pasen por los extremos del vector (Fig. 3-A). La proyección se facilita si en lugar del triángulo se usan tres ejes paralelos a las líneas de derivación que se cortan en el centro del triángulo (sistema triaxial) (Fig. 3-B).

Si se superpone a este sistema las líneas de derivación unipolares o unipolares aumentadas, queda así formado el sistema hexaxial. Los signos de los extremos de los ejes corresponden a los terminales del electrocardiógrafo a los que se conecta la derivación correspondiente. Para localizar los vectores se usa una graduación sexagesimal de 0 a 180 grados con signo positivo para la semicircunferencia inferior y negativo para la superior (Figura 4).

PARTE PRACTICA: Usando el triángulo de Einthoven y el sistema triaxial proyecte en DI, DII y DIII vectores ubicados a 0, 90 y 180 grados; comprobar en todos los casos que DI + DIII = DII. Observar el valor de la proyección sobre líneas de derivación perpendiculares y paralelas al vector. Construir un sistema hexaxial.

ACTIVACION AURICULAR Y ONDA P:
La aurícula es de poco espesor y la activación auricular puede ser considerada como un proceso tangencial a su superficie que se propaga desde el nódulo sinusal en todas direcciones. Dado que el marcapaso en la aurícula derecha es superior y ligeramente posterior, la dirección global de la despolarización será hacia la izquierda y hacia abajo, sobre el plano frontal y ligeramente hacia adelante. En el ECG se inscribe la onda P. Discuta la polaridad y amplitud de la onda P en las derivaciones del plano frontal, teniendo en cuenta la proyección del vector sobre el sistema hexaaxial. La onda T de repolarización auricular queda generalmente encubierta por el vector QRS de despolarización ventricular. Discuta su polaridad respecto a la onda P.

ACTIVACION VENTRICULAR Y COMPLEJO QRS:
Existe un período isoeleéctrico entre el final de la onda P y el comienzo del complejo QRS dado que el potencial aurículo-ventricular y el de las fibras de Purkinje no se registran desde la superficie del cuerpo. La primera zona en despolarizarse es la cara izquierda del tabique interventricular en su porción media. La despolarización del ventrículo se hace en forma perpendicular a la superficie de la pared. El vector que aparece en este momento, denominado vector 1 o septal, se dirige hacia adelante, hacia la derecha y hacia abajo, aunque su dirección varía con la posición espacial del tabique que a su vez depende de la del corazón. Los dipolos que se manifiestan son los de las áreas no canceladas por dipolos diametralmente opuestos. El vector es proporcional a la superficie libre de la pared y perpendicular a la misma (Fig. 5-A).

![Fig. 5A](image)

La despolarización continúa hacia las superficies endocárdicas de ambos ventrículos cerca de sus ápices. El vector resultante de este proceso es el vector 2 que va hacia atrás, a la izquierda y abajo (Fig. 5-B). La última zona en despolarizarse corresponde a las porciones altas o basales de los ventrículos y del tabique que originan el vector 3 o basal que se dirige hacia arriba, a la derecha y atrás (Fig. 5-C).

![Figura 5-B](image) ![Figura 5-C](image)

REPOLARIZACION VENTRICULAR Y ONDA T:
Cuando todo el miocardio está despolarizado no existen diferencias de potencial y se inscribe el segmento ST. La dirección en que se produce la
repolarización ventricular es opuesta a la despolarización, pero los dipolos llevan polaridad opuesta, por lo que podemos considerar que se origina un vector hacia abajo, a la izquierda y adelante, que se inscribe como onda T.

PARTE PRÁCTICA

Construir un sistema hexaaxial. Representar cada uno de los vectores y proyectarlos sobre las líneas de derivación. Construir el registro electrocardiográfico que se vería en distintas derivaciones.

FIGURA 6: Ondas, segmentos e intervalos indicando tiempo y voltaje.

ONDAS, INTERVALOS Y SEGMENTOS DEL ECG

Además de las diferencias debidas a la posición de los electrodos en cada derivación del ECG, las características de las ondas y segmentos varían con la edad, tipo morfológico, frecuencia cardíaca y otros factores fisiológicos (Fig. 6). La onda P se inscribe como una pequeña deflexión redondeada que representa la excitación de ambas aurículas; su duración es menor cuanto mayor es la frecuencia cardíaca, teniendo un valor promedio de 85 ± 15 ms. La amplitud de esta onda varía entre 0,025 y 0,300 mV, dependiendo de la derivación considerada.

El complejo QRS representa la activación de los ventrículos, y su duración varía entre 80 y 160 ms. Cuando la primera deflexión es negativa, se la denomina como onda Q; todas las ondas positivas son designadas con la letra R, llamándose ondas S a las deflexiones negativas que siguen a una onda R.

La onda Q normalmente no sobrepasa el valor del 30% de la onda R en DI o del 40% en DII. En DIII puede llegar a ser del 150% de la onda R pero con la característica de que disminuye con la inspiración profunda. La onda T representa la repolarización ventricular, su duración no tiene mayor importancia práctica; tiene por característica que su rama ascendente es más lenta que la descendente; generalmente es positiva en todas las derivaciones salvo en aVR. El segmento P-R se mide desde el final de la onda P hasta el comienzo del QRS, normalmente no debe presentar desniveles mayores de 0,5 mm; representa el retraso que sufre la onda de activación a nivel de la región aurículoventricular. El segmento S-T se mide desde el final del complejo QRS hasta el comienzo de la onda T, aunque en la mayoría de los casos no existe un límite neto entre este segmento y el comienzo de la onda T. Normalmente no presenta desniveles mayores de 1 mm. El intervalo PR comprende la onda P y el segmento P-R. El intervalo QT representa toda la actividad eléctrica ventricular, se mide desde el complejo QRS hasta el final de la onda T.

COORDENADAS DEL PAPEL DE REGISTRO

El trazado electrocardiográfico queda construido sobre un sistema de abscisas y ordenadas que forman un cuadriculado sobre el papel de registro. Tanto las líneas horizontales como las verticales están a una distancia de 1 mm. Cada 5
línneas hay una línea más gruesa que delimita cuadrados de 0,5 cm de lado. El papel corre generalmente a una velocidad de 25 mm/seg. Debe calibrarse el aparato para que 1 mV produzca un desplazamiento de 1 cm en el registro (mediante un dispositivo del mismo); así en sentido horizontal cada mm corresponde a 40 mseg y el espacio entre dos líneas gruesas -5 mm- a 200 mseg; mientras en sentido vertical cada mm equivale a 0,1 mV (Fig. 7).

EJE ELECTRICO DEL CORAZON

El vector que representa globalmente la activación ventricular en el plano frontal, recibe el nombre de vector cardíaco medio. El ángulo que forma con la horizontal indica la posición del eje eléctrico del corazón. Para calcularlo haremos la suma algebraica de la medida en mm de los picos positivos y negativos del QRS y el valor resultante lo transportaremos con una escala adecuada a la línea de derivación correspondiente del sistema hexaaxial. Tendremos así una de las proyecciones del vector cardíaco medio (Fig. 8).

Nota:

Hemos considerado al hacer el cálculo las alturas de las ondas, aunque originalmente tomamos que el valor de la proyección del vector se corresponde con el área de las ondas en cada línea de derivación (Fig. 9).

PARTE PRACTICA

Obtener el electrocardiograma de un alumno en las derivaciones standard, unipolares aumentadas y precordiales. Reconocer las ondas, segmentos e intervalos, midiendo su duración. Obtener el eje eléctrico. Obtener la dirección del vector cardíaco medio en el plano horizontal en base a las derivaciones precordiales.